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Preface

The interest lies in a dynamic formulation capable of simulating the flight of flexible aircraft
on a computer. Such simulations can speed up the aircraft design process. Moreover they are
indispensable to autonomous aerial vehicles, which require autopilots.

Computer simulation of the flight of flexible aircraft is no trivial matter. Indeed, they require
a new paradigm, discarding confining assumptions and adopting potent methodology. This work
develops such a paradigm, which amounts to treating the aircraft as a single system. To this
end, it integrates into a single mathematical formulation the disciplines pertinent to the flight of
flexible aircraft, namely, analytical dynamics, structural dynamics, aerodynamics and controls.
The unified formulation is based on fundamental principles and incorporates in a natural manner
both rigid body motions of the aircraft as a whole and elastic deformations of the flexible compo-
nents (fuselage, wing and empennage), as well as the aerodynamic, propulsion, gravity and control
forces. The aircraft motion is described in terms of three translations (forward motion, sideslip
and plunge) and three rotations (roll, pitch and yaw) of a reference frame attached to the unde-
formed fuselage, and acting as aircraft body axes, and elastic displacements of each of the flexible
components relative to corresponding body axes. The equations of motion are expressed in a form
ideally suited for efficient computer processing. A perturbation approach permits division of the
problem into a nonlinear flight dynamics problem for maneuvering quasi-rigid aircraft and a linear
“extended aeroelasticity” problem for the elastic deformations and perturbations in the rigid body
translations and rotations, where the solution of the first problem enters as an input into the second
problem. The term *“extended aeroservoelasticity” refers to a family of problems, each problem
characterized by an input from a different aircraft maneuver, with the corresponding equations in-
volving not only both elastic and rigid body variables but also coefficients depending on any given
maneuver, and hence coefficients depending generally on time. This is materially different from
the common aeroservoelasticity, which involves for the most part elastic variables alone and is not
subject to inputs from aircraft maneuvers. The control forces for the flight dynamics problem are
obtained by an “inverse” process. On the other hand, the feedback control forces for the extended
aeroelasticity problem are derived by means of LQG theory. A numerical example presents time
simulations of rigid body perturbations and elastic deformations about 1) a steady level flight and
2) a steady level turn maneuver.

It should be pointed out that sufficient details are provided so as to permit interested parties to
replicate the results.
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1. Introduction and Literature Review

This investigation is concerned with a dynamic formulation capable of simulating the flight of
flexible aircraft. It integrates seamlessly in a single and consistent mathematical formulation all
the necessary material from the pertinent disciplines, namely, analytical dynamics, structural dy-
namics, aerodynamics and controls. The unified formulation is based on fundamental principles
and incorporates in a natural manner both the rigid body motions and the elastic deformations,
and the couplings thereof, as well as the aerodynamic, propulsion, control and gravity forces. In
essence, the formulation not only unifies flight dynamics and aeroelasticity, traditionally treated as
separate disciplines, but, going beyond that, it permits a computer simulation of the response of
flying flexible aircraft to external stimuli.

In describing the motion of rigid bodies in space, it is convenient to attach a set of axes to
the body, where the axes are commonly known as body axes, and express the motions in terms
of components along these body axes. It is quite common to describe the motion of rigid bodies
in terms of the translation of the origin of the body axes and the rotation of the body axes; the
corresponding variables, particularly the rotations, are referred to as quasi-coordinates. If the origin
of this reference frame coincides with the mass center of the body, the translations and rotations
are independent of each other. Moreover, if the body axes themselves coincide with the principal
axes of the body, then the products of inertia are zero, so that the inertia matrix is diagonal.

The situation is more complicated for flexible bodies, in which case there are basically two types
of reference frames:

i. Fixed in the undeformed body - In this case, it is convenient to define the translation of
the origin of the reference frame and the rotation of the reference frame as the rigid body
translation and rotation of the body, and regard any displacement relative to the reference
frame as elastic deformation.

ii. Moving relative to the undeformed body - In this case, it is common to choose the reference
axes so that the linear momentum and angular momentum vectors due to elastic deformations
vanish; axes satisfying these conditions are called mean axes. Because the elastic defor-
mations depend in general on time, the mean axes are continuously moving relative to the
undeformed body. Of particular interest are mean axes with the origin at the system mass
center, because in this case the three types of motion, namely, the translations of the refer-
ence frame, the rotations of the reference frame and the deformations measured relative to this
frame, are all inertially decoupled. The price to be paid for the use of mean axes is very steep,
however, as the constraints defining these axes are not easy to enforce. For this reason, it is
common to invoke the use of mean axes to justify inertial decoupling, but without enforcing
the constraints.

Whereas proper use of mean axes for flexible bodies in vacuum can produce inertial decoupling,
in the case of aircraft any such benefits are questionable, because the equations of motion remain
coupled through the aerodynamic forces. Moreover, if one insists on the use of mean axes, then
the aerodynamic forces must also be expressed in terms of components along the same mean axes,
which is a very tedious task at best.

The motion of force-free rigid bodies in space is unstable. Under certain circumstances, the
motion of rigid bodies can be stabilized by imparting them some spin about the axis of either
the minimum or the maximum moment of inertia. On the other hand, flexible bodies cannot be
stabilized if the spin is about the axis of minimum moment of inertia. The preceding statements



imply that the motion takes place in vacuum, such as in the case of a spacecraft. Matters are
entirely different for flexible aircraft, which are neither force-free, nor do they operate in vacuum.
In fact, aircraft are subjected to aerodynamic and wind forces, and any stabilization is done by
active means, namely, by the engine throttle and control surfaces, where the latter consist of the
aileron, elevator and rudder.

The flight of aircraft tends to be quite diverse, ranging from steady level cruise to complex
maneuvers, and stabilization requires the use of controls permitting the aircraft to carry out the
intended maneuver while suppressing any deviations from it, whether in the form of rigid body
displacements or elastic deformations. Both flight dynamics and aeroelasticity are concerned with
aircraft stability. But, whereas flight dynamics is concerned mainly with rigid body motions, aeroe-
lasticity is concerned with vibration and flutter.

A stability analysis tends to be limited in scope, in the sense that it can only yield a qualitative
statement about the nature of motion in the neighborhood of an equilibrium state of a system.
More specifically, it can state whether the equilibrium is merely stable, asymptotically stable, or
unstable. The time plays no role in a stability analysis. In fact, stability analyses tend to be limited
to cases in which the time variable can be eliminated, such as when the equations of motion can
be reduced to an eigenvalue problem. The stability of time-dependent maneuvers can only be
evaluated numerically.

To obtain information going beyond stability statements, such as the time response of aircraft
to external stimuli, it is necessary to undertake a simulation of the equations of motion, which
amounts to the integration of the equations of motion. Such a dynamic simulation can be used for
parametric studies in preliminary design. Moreover, it can be used to determine aircraft perfor-
mance, thus reducing the time required for flight testing by “flying the aircraft on a computer.”

The choice in this paper is to work with a reference frame attached to the undeformed aircraft,
which has many advantages over mean axes. But, because the elastic deformations prevent the
origin of a frame attached to the undeformed body from coinciding with the mass center and the
axes themselves from coinciding with the principal axes for all times, there is no preferred choice
of a reference frame; we base the choice on geometric considerations. In particular, we attach a
set of body axes to the undeformed fuselage, where one of the axes is along the symmetry axis.
For convenience, sets of body axes are also attached to the other flexible components, such as the
wing and the empennage. Ultimately, however, all motions are referred to the fuselage body axes,
which act as a reference frame for the whole aircraft.

The mathematical formulation is based on equations of motion in terms of quasi-coordinates
derived earlier by the first author for flexible spacecraft and later adapted by him to flexible aircraft.
The formulation is hybrid in nature, in the sense that it consists of ordinary differential equations
for the rigid body translations and rotations of the aircraft as a whole and boundary-value problems
for the elastic deformations of the flexible components of the aircraft, namely, the fuselage, wing
and empennage. For practical reasons, the distributed variables describing the boundary-value
problems for the individual components are discretized in space, obtaining a relatively large set
of second-order ordinary differential equations for the whole aircraft. The discretization process
amounts to representing the distributed variables as finite series of known space-dependent shape
functions multiplied by time-dependent generalized coordinates. The derivation of the equations
of motion in conjunction with the extended Hamilton principle requires expressions for the ki-
netic energy, potential energy and virtual work, all scalar quantities. In turn, the kinetic energy
requires the velocity of every point of the aircraft, which can be obtained by means of an orderly
kinematical synthesis, going from the fuselage to the wing and to the empennage. The potential



energy is merely equal to the strain energy. Moreover, the aerodynamic, propulsion, control and
gravity forces are accounted for through the virtual work. Rather than deriving first hybrid equa-
tions of motion and then discretizing them in space, it is perhaps more expeditious to carry out the
discretization directly in the kinetic energy, potential energy and virtual work, thus obtaining the
desired set of ordinary differential equations for the whole flexible aircraft without the need to de-
rive boundary-value problems. For integration of the differential equations and for control design,
it is necessary to transform the set of second-order differential equations into a set of first-order
differential equations, namely, into a set of state equations. It turns out that, for the problem at
hand, it is more convenient to work with momenta rather than with velocities. Although the result-
ing first-order equations actually represent phase equations, we shall continue to refer to them as
state equations.

The simulation of the flight of an aircraft amounts essentially to integration of the state equa-
tions. Because of various nonlinearities involved, such as those due to rigid body motions and
aerodynamic forces, the integration must be carried out numerically on a computer. In one way or
another, computer integration can only be done in discrete time, which raises the question of the
size of the sampling period, or time step. Of course, the answer depends on the desired accuracy
of the simulation, and it is intimately related to the dynamic characteristics of the system. If the
aircraft is to be controlled by an autopilot, then the simulation must be carried out in real time. If
the dynamic characteristics are such that the time step must be relatively short, perhaps of the order
of 0.01s, most aerodynamic theories in current use must be ruled out, as the computation of the
dynamic pressure over the entire aircraft is sure to take considerably longer time than that. Hence,
a new method for computing the dynamic pressure must be developed, one characterized by high
computational speed, even if some accuracy must be sacrificed. Moreover, the method for com-
puting the dynamic pressure must be compatible with the method for modeling the airframe. If the
formulation is to be used for aircraft design, then real-time simulation may not really be necessary,
although on-line simulation may. But, the size of the sampling period, which is determined by the
system dynamic characteristics, remains the same regardless of whether the simulation is in real
time or only on-line. The implication is that the computation of the dynamic pressure must still be
relatively fast. Indeed, a mere 10 s simulation requires 1,000 time steps. Hence if the computation
of the dynamic pressure takes one hour, the simulation requires over 40 days. This demonstrates
the need for a method for computing the dynamic pressure in a very short time period. In this
regard, a reasonably accurate approximate method may be acceptable.

As indicated above, the equations of motion for a flying flexible aircraft are nonlinear, where the
nonlinearity is due to the rigid body motions and the aerodynamic forces. Moreover, the equations
tend to be of high order, the order depending on the discretization procedure employed. Hence, one
can expect difficulties both with a stability analysis and with control design. In addition, difficulties
can be experienced in the integration process, because some of the variables describing the aircraft
rigid body motions tend to be large and the variables describing the elastic displacements tend to
be small. A perturbation approach to the solution can obviate many of these difficulties. More
specifically, the solution can be represented as the sum of a zero-order part for the large rigid body
variables and a first-order part for the small elastic variables and perturbations in the rigid body
variables, where the zero-order quantities are larger than the first-order quantities by at least one
order of magnitude. Then, the equations of motion can be separated into a zero-order problem
for the rigid body motions alone and a first-order problem for the elastic displacements and the
perturbations in the rigid body motions. The state equations for the zero-order problem are of
order 12 at most; they can be identified as the equations of flight dynamics and can be used to



describe aircraft maneuvers. On the other hand, the state equations for the first-order problem
are of order 12 + 2n., where n. is the number of elastic degrees of freedom; they represent the
extended aeroelasticity equations, where “extended” is in the sense that they include not only
the elastic displacements but also perturbations in the rigid body variables, where the latter are
sometimes referred to as “body freedoms.”

The flight dynamics equations are in general nonlinear and describe the translations and rota-
tions of the aircraft as if it were rigid. They can be used to design given maneuvers of an aircraft,
which amounts to solving an “inverse” problem. In the commonly encountered direct problems
in dynamics of rigid bodies, the forces are given and the equations of motion are solved for the
state, i.e., for the positions and velocities. In the context of the present formulation unifying flight
dynamics and aeroelasticity, however, the state representing a desired maneuver is given and the
problem amounts to determining the engine thrust and the control surface forces permitting the
realization of the maneuver; this represents an inverse problem. On the other hand, the extended
aeroelasticity equations are linear, but they contain the state and forces from the flight dynamics
problem as coefficients and as an input. Hence, there is a set of extended aeroelasticity equations
for every conceivable aircraft maneuver. If the flight dynamics problem represents steady level
cruise or a steady level turn maneuver, then the zero-order state and forces are constant and the
system of extended aeroelasticity equations is linear time-invariant. In this case, the state equa-
tions lend themselves to a standard stability check, such as one based on the roots of the eigenvalue
problem, to control design by commonly used techniques, such as the LQG method, and to ready
integration for simulation of the aircraft response to external stimuli. If the flight dynamics prob-
lem represents a time-dependent maneuver, such as the transition from one steady state to another,
then the zero-order state and forces depend on time and the extended aeroelasticity state equations
are linear time-varying, which precludes a standard stability analysis. However, the state equations
still permit control design and response simulation.

The following literature review should help relate the present paper to previous investigations:
Although flight dynamics and aeroelasticity have been developed traditionally as separate disci-
plines, the need for considering interacting efforts was recognized quite early.!™® Still, relatively
few attempts have been made to link the two disciplines, and when such attempts were made almost
invariably the scope was quite limited. This lack of interest in linking flight dynamics and aeroe-
lasticity can be attributed to a reluctance to increase the complexity of the problem to a significant
extent at a time when powerful computers capable of solving such problems were not available.
As a result, problems combining flight dynamics and aeroelasticity effects have tended to be sub-
jected to many simplifying assumptions designed to permit largely analytical solutions. In one of
the first references on the subject, Bisplinghoff and Ashley* derived scalar equations of motion for
an unrestrained flexible vehicle. The equations consisted of three inertially decoupled sets, one for
the rigid body translations, one for the rigid body rotations and one for the elastic deformations,
the latter expressed in terms of aircraft structural natural modes. Although not stated explicitly,
this implies the use of principal mean axes with the origin at the vehicle mass center. Moreover,
the inertia matrix was assumed to be constant, which implies that the contributions from the elastic
deformations to the inertia matrix were ignored. Aerodynamic forces for the case of small dis-
turbed motions from steady rectilinear flight were given in terms of an influence function for an
unrestrained aircraft. An integrated analytical treatment of the equilibrium and stability of flexi-
ble aircraft was presented by Milne.® In Part I, he derived linearized equations of motion about a
steady state, assuming not only that the elastic deformations but also the rigid body translations
and rotations were small. Although the constraint equations defining the mean axes were given,



the formulation seems to have used body axes attached to the undeformed aircraft. The equations
are expressed in a vector-dyadic form that does not permit a ready check for missing terms and,
more importantly, does not lend itself to ready computer solutions. In Part II, the general analysis
was applied to the study of equilibrium and longitudinal stability about equilibrium of an aircraft
having longitudinal flexibility only. A monograph by Taylor and Woodcock® consists of two parts
representing different approaches to the same problem. In Part I, Taylor presents a very lucid sum-
mary of the equations of motion for deformable aircraft derived by Bisplinghoff and Ashley* and
by Milne.® Following a reduction to scalar form, the equations are simplified to permit the study
of some special cases. In Part II, Woodcock uses an unorthodox form of Lagrange’s equations
to derive scalar perturbation equations of motion about a given *“datum motion,” not necessarily
corresponding to steady level rectilinear flight; the equations are in terms of body-fixed axes. The
question of aerodynamics receives scant attention in both parts. An extensive report by Dusto et
al.,” resulting in a computer program known as FLEXSTAB, integrates flexible body mechanics
with a low frequency aerodynamics employing linear influence coefficients. The flexible aircraft
mechanics uses free vibration modes superimposed on rigid body dynamics. Aerodynamic influ-
ence coefficients are derived using a paneling scheme lending itself to empirical corrections. The
equations are expressed in terms of steady perturbations about a reference motion to determine dy-
namic stability by characteristic roots or by time histories following an initial perturbation or some
gust disturbance. There are two major concerns. The first consists of the fact that the structural
dynamics formulation is in terms of mean axes and the aerodynamics is in terms of a different
set of axes, namely, “fluid axes,” where the latter move with a steady velocity relative to the un-
deformed aircraft body axes; using two different sets of axes in the same formulation, without
making the necessary transformation from one set to another, is a very questionable proposition.
The second source of concern is the time required to run FLEXSTAB (see Ref. 24). Several ana-
lytical methods for mathematical modeling of aircraft active control system design are described
by Roger,? placing the emphasis on aerodynamics. Inconsistencies in control configured vehicles
are highlighted by Schwanz.® He suggests that familiarity of flight control specialists with a broad
spectrum of pertinent disciplines, including aerodynamics, structures, modern dynamics and con-
trol, can minimize and perhaps avoid altogether these inconsistencies. Free-free dynamic analyses
of forward swept wing aircraft by Miller, Wykes and Brosnan'® have shown that the static aeroe-
lastic divergence exhibited by a cantilevered forward swept wing is replaced by a low-frequency
flutter mode due to coupling between the wing divergent mode and the aircraft short-period mode.
This coupling is shown to have detrimental effects on flying qualities, ride qualities and gust loads,
but these effects can be minimized by an active flutter control system. In the same spirit, Weisshaar
and Zeiler'! discuss the importance of including aircraft rigid-body modes in the aeroelastic anal-
ysis of forward swept wing aircraft. They show that body-freedom flutter and aircraft aeroelastic
divergence, not wing divergence, are the primary aeroelastic instabilities. Rodden and Love'? point
out that equations of motion derived using mean axes for the inertial terms and axes attached to the
undeformed structure for the flexibility terms are likely to be incorrect; such flexibility terms are
obtained when using structural influence coefficients. Cerra, Calico and Noll !* developed a linear
model of an elastic aircraft providing the capability of analyzing the coupling between the rigid
body motions and the elastic motions. The model can be used for stability and control analyses.
As in Ref. 4, the rigid body translations, rigid body rotations and elastic deformations are assumed
to be inertially decoupled. A framework for constructing simulation models for flexible aircraft is
described by Arbuckle, Buttrill and Zeiler.!* The objectives are to increase simulation model fi-
delity and to reduce the time required for developing and modifying these models. The framework



has been applied to the development of an open-loop F/A-18 simulation model. Buttrill, Zeiler
and Arbuckle!® considered a mathematical model integrating nonlinear rigid body mechanics and
linear aeroelasticity in conjunction with Lagrangian mechanics to derive the equations of motion
for flexible aircraft. Undamped vibration modes satisfying first-order mean axes constraints were
used as generalized coordinates. Considering a model of an F/A-18 aircraft, elastic modes sig-
nificantly affected by inertial coupling were found to be aerodynamically decoupled from the rest
of the model. Zeiler and Buttrill'® used the extended Hamilton principle to derive equations of
motion for a flexible body. The equations include inertial terms due to flexibility, as well as terms
coupling rigid body and flexible momenta. In addition, a nonlinear strain-displacement relation
permits centrifugal stiffening to be taken into account. The equations are used to simulate the
motion of a structure spinning initially about an unstable principal axis in gravity-free vacuum.
Using Lagrange’s equations, Waszak and Schmidt!” derived the equations of motion for a flexible
aircraft. The strip theory was used to obtain closed-form integral expressions for the generalized
aerodynamic forces. Moreover, the use of mean axes permitted inertial decoupling of the rigid
body translations, rigid body rotations and elastic deformations, the latter being expressed in terms
of aircraft vibration modes. The modeling method was applied to a generic elastic aircraft, and the
model was used for a parametric study of the flexibility effects. Nonlinear equations of motion for
elastic panels in an aircraft executing a pull-up maneuver of given velocity and angular velocity
were derived by Sipcic and Morino.!® The effect of the maneuver on the flutter speed and on the
limit cycle amplitude was discussed for various load conditions. Accurate modeling of aeroelas-
tic vehicles, with emphasis on the rigid body and elastic degrees of freedom, was discussed by
Waszak, Buttrill and Schmidt.!® A comparison of the approach of Ref. 17 on the one hand and that
of Refs. 15 and 16 on the other hand was presented and various model reduction techniques were
reviewed. An integrated analytical framework for modeling elastic hypersonic flight vehicles was
developed by Bilimoria and Schmidt.”® A Lagrangian approach was used to derive equations of
motion including rigid body motions and elastic deformations, as well as effects due to fluid flow,
rotating machinery, wind and a spherical rotating Earth. The elastic deformations are represented
in terms of modal coordinates relative to mean axes. A paper by Olsen?! reveals new insights in
the aeroelasticity and flight mechanics of flexible aircraft by obtaining and solving the equations
of motion for an accelerating, rotating aircraft. General equations in terms of quasi-coordinates are
first obtained and then reduced to the case of a “flat” airplane. The influence of gusts on the dy-
namics of large flexible aircraft is analyzed by Teufel, Hanel and Well,>2 who present an integrated
flight and aeroelastic control law reducing gust sensitivity. Moreover, the control laws, designed by
u-synthesis, are such that flight maneuvers do not excite elastic motions. K6nig and Schuler®® de-
scribe how an integral model for large flexible aircraft can be derived and how an integral control,
covering flight control, load control and structural mode control, can be designed by multiobjec-
tive parameter optimization. Samareh and Bhatia®* presented a unified three-dimensional approach
that reduces the number of interactions among various disciplines by using a computer-aided de-
sign model. Results were presented for a blended wing body and a high-speed civil transport.
Schmidt and Raney?> considered the effects of flexibility on the flight dynamics of large flexible
aircraft. In particular, when the frequencies of the lower elastic modes approach those of the rigid
body modes the handling characteristics can suffer and the flight control system design tends to
become significantly more complex. Expressing the motion in terms of components along mean
axes, they add the flexible degrees of freedom to an existing simulation model of the vehicle’s rigid
body dynamics. The NASA Langley Research Center simulation facility was used to obtain the
dynamic response of two different aircraft.



With some exceptions, the equations of motion in Refs. 3-23,25 were derived either by means of
Newtonian mechanics or by means of standard Lagrange’s equations. These approaches are more
suitable when the motions are expressed in terms of inertial axes and/or when the rotations are in
terms of Euler’s angles. Yet, in the case of aircraft it is more convenient to express the motion
in terms of components along body axes. In this regard, we should point out that this is common
practice in flight dynamics, in which case the angular veolcities in terms of body axes are the well-
known roll, pitch and yaw. Of course, equations in terms of inertial axes and/or Eulerian angles can
always be transformed into equations in terms of body axes through coordinate transformations. It
is appreciably simpler, however, to derive the equations of motion directly in terms of body axes,
which can be done through the use of Lagrange’s equations in terms of quasi-coordinates.?

Motivated by problems in dynamics of spacecraft with flexible appendages, Meirovitch and
Nelson?’ derived for the first time hybrid (ordinary and partial) differential equations of motion
coupling rigid body rotations and elastic deformations. The elastic deformations were measured
relative to a set of body axes attached to the undeformed spacecraft and the rotational motions were
in terms of quasi-coordinates. The explicit formulation of Ref. 27 was extended by Meirovitch®®
to a generic whole flexible body by deriving a set of hybrid equations of motion in terms of quasi-
coordinates, treating for the first time translational velocities as quasi-velocities; the equations were
then cast in state form. The equations of motion in terms of quasi-coordinates of Ref. 27 were used
by Platus®® to derive coupled equations of motion governing the aeroelastic stability of spinning
flexible missiles. The coupling between the elastic deflections and rigid-body motions was nonlin-
ear, but the equations were linearized so as to permit a stability analysis. The developments of Ref.
28 were extended by Meirovitch®® and Meirovitch and Stemple3! to flexible multibody systems.
Then, the approach of Refs. 28, 30 and 31 was used by Meirovitch®? to produce a definitive unified
theory for the flight dynamics and aeroelasticity of whole aircraft. Generic state equations describ-
ing the flight of flexible aircraft were first derived in hybrid form and subsequently discretized in
space. Then, using a perturbation approach, the discrete state equations were separated into a set of
nonlinear flight dynamics equations for the rigid body variables and a set of linear extended aeroe-
lasticity equations for the elastic variables and perturbations in the rigid body variables. Nydick
and Friedmann?? applied the equations of motion in terms of quasi-coordinates derived in Ref. 28
to the analysis of a hypersonic vehicle in free flight. To this end, they simplified the equations by
considering only the pitch and plunge rigid body degrees of freedom and small elastic displace-
ments. The nonlinear equations were linearized about a trim state obtained by using a rigid body
trim model and steady hypersonic aerodynamics. Flutter derivatives were calculated by means of
piston theory. The generic formulation of Ref. 32 was used by Meirovitch and Tuzcu®* to carry out
the derivation of explicit equations of motion in terms of quasi-coordinates for a flexible aircraft
model and to cast the equations in a special state form suitable for simulation on a computer. Due
to relative ease of integration into the unified formulation and computational speed advantages, the
aerodynamic forces were derived by means of strip theory. Then, equations for flight dynamics
and extended aeroelasticity were derived. An approach entirely different from that in Ref. 34 is
proposed by Fornasier et al.3® Indeed, Ref. 35 is concerned essentially with the fluid-structure in-
teraction in a flexible aircraft. To this end, it uses “temporal and spatial algorithms” to make two
independently developed computer codes, one for the aerodynamics (CFD) and one for structural
mechanics (CSM), work together. The scope of Ref. 35 is relatively limited, as the aircraft is as-
sumed to follow a known preset trajectory, so that there are no rigid body degrees of freedom, and
there are no controls. Worthy of notice is the fact that several 5 s simulations, including some of
the wing tip displacement, took approximately 35 hrs on a 32-processor Sgi computer.



The present paper represents an extension of the developments in Ref. 34. In addition to some
modeling refinements, the paper contains a numerical example for a model of a flexible aircraft
containing 76 states, 12 rigid body states and 64 elastic states. Two flight dynamics problems are
considered, the steady level cruise and a steady level turn maneuver. The corresponding extended
aeroelasticity problems are derived and used to design feedback controls guaranteeing the vanish-
ing of the rigid body perturbations and the elastic vibration, and hence the stability of the maneuver
and the comfort of the flight. The control design consists of a linear quadratic regulator in conjunc-
tion with a stochastic observer. The integrated process is demonstrated by means of a numerical
example including a variety of rigid body and elastic displacements time simulations together with
the corresponding controls time histories, all carried out on a 1 GHz PC using MATHEMATICA.



2. Hybrid Equations of Motion in Terms of Quasi-Coordinates

We regard the aircraft model shown in Fig. 1 as a flexible multibody system subjected to gravity,
aerodynamic, propulsion and control forces, where the bodies can be broadly identified as the fuse-
lage, wing and empennage. The motion of the aircraft can be conveniently described by attaching
a reference frame zsyszs to the undeformed fuselage (Fig. 1), as well as corresponding reference
frames x,, ¥, 2w and z.y.z. to the wing and empennage, where the various reference frames repre-
sent respective body axes. Then, the motion can be described by six rigid body degrees of freedom
of the fuselage body axes, three translations and three rotations, and by the elastic deformation of
every point of each flexible component relative to the respective body axes.

From Ref. 32, and making provisions for members in torsion, as well as for structural damping,
the hybrid equations of motion for the whole flexible aircraft in terms of quasi-coordinates have

Figure 1. Flexible Aircraft Model

the generic form
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where

L = Lagrangian for the whole aircraft
Vs, wy = vector of translational, angular quasi-velocities of z;y;z;
Vf, wy = skew symmetric matrices derived from V;, w;